

kantSaar
Kooperatives, automatisiertes Fahren im neurokognitiven Testfeld Saarland

Deliverable D1
Architecture, Data Structure and Data Preparation

Version 1.0
Dissemination level public
Project Coordination htw saar

Funded by

Introduction

kantSaar

Project Coordination

Prof. Dr. Horst Wieker
Head of ITS Research Group (FGVT) at the
htw saar – Hochschule für Technik und Wirtschaft des Saarlandes,
University of Applied Sciences
Department of Telecommunications
Campus Alt-Saarbrücken
Goebenstr. 40
D-66117 Saarbrücken
Germany

Phone +49 681 5867 195
Fax +49 681 5867 122
E-mail wieker@htwsaar.de

Introduction

kantSaar

Legal Disclaimer:

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have
no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability which
is mandatory due to applicable law.

© 2018 Copyright by kantSaar Consortium

Authors:

J. Golanov – htw saar

C. Metzner – htw saar

A. Otte – htw saar

J. Staub – htw saar

Introduction

kantSaar

A. Revision and History chart

Version Date Description

0.0 2019-01-30 Created Document Root

1.0 2020-02-29 Document Release

Introduction

kantSaar

B. Table of Content

A. REVISION AND HISTORY CHART .. 4

B. TABLE OF CONTENT .. 5

FIGURES ... 8

TABLES 8

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION .. 10

1.1 Project goals ... 10

1.2 Approach .. 10

2 REQUIREMENT ANALYSIS.. 11

2.1 Scenarios .. 11

2.1.1 SCN-00: Visionary Scenario ... 11

2.1.2 SCN-01: Stationary vehicle blocks lane .. 11

2.1.3 SCN-02: Pedestrians at the intersection .. 11

2.1.4 SCN-03: Drive towards fog .. 12

2.1.5 SCN-04: Bad road conditions ... 12

2.2 Gathered Requirements .. 12

3 ARCHITECTURE ... 17

3.1 Overview ... 18

3.2 Components ... 18

3.2.1 Driver-related Data Aggregator ... 18

3.2.2 Environment Data Aggregator ... 19

Introduction

kantSaar

3.2.3 Traffic Data Aggregator ... 19

3.2.3.1 Traffic Data Aggregator Client ... 20

3.2.3.2 Traffic Data Aggregator Service Provider ... 21

3.2.3.3 External Traffic Data Provider ... 21

3.2.4 Vehicle Data Aggregator ... 22

3.2.5 Data Fusion ... 23

3.2.6 Situation Storage .. 24

3.2.7 Situation Evaluation .. 24

3.3 Interfaces .. 25

3.3.1 SE_SS .. 25

3.3.2 DF_SS .. 25

3.3.3 EDA_DF ... 25

3.3.4 TDA_DF ... 25

3.3.5 VDA_DF... 26

3.3.6 DDA_DF .. 26

3.3.7 EXT_EDA ... 26

3.3.8 SA_EDA ... 26

3.3.9 TLC_TDASP .. 27

3.3.10 TDAC_TDASP ... 27

3.3.11 EXT_TDASP ... 27

4 DATA MODEL .. 28

4.1 Data definitions ... 28

4.1.1 Protocol Buffers .. 28

4.2 Data structures ... 28

4.2.1 Package: dataelements ... 28

4.2.2 Package: metadata .. 29

Introduction

kantSaar

4.2.3 Package: general ... 29

4.2.4 Package: environmentaldata ... 32

4.2.5 Package: vehicledata ... 32

4.2.6 Package: traffichelper ... 35

4.2.7 Package: trafficdata .. 38

4.2.8 Package: neurocognivitedata .. 40

5 DATA SUPPLEMENTATION .. 42

5.1 Problem .. 42

5.2 Approach .. 42

5.2.1 Data validity and expiry date ... 42

5.2.2 Interpolation ... 43

5.2.3 Artificial Intelligence ... 43

C. LITERATURE .. 44

Introduction

kantSaar

Figures
Figure 1 Data sources in the remote station plane ... 17

Figure 2 Detailed Architecture .. 18

Figure 3 EDA inner structure and environment .. 19

Figure 4 TDA inner structure and environment .. 20

Figure 5 VDA inner structure and environment .. 22

Figure 6 table structure of raw data.. 23

Figure 7 table structure of situation data ... 23

Figure 8 schematic draft of situation data .. 24

Figure 9 Validity example .. 43

Tables
Table 1 Requirement list ... 16

Table 2 VDA sensor values .. 22

file://///172.19.1.13/Research/kantSaar/Deliverable/D1_Architecture_Data_Structure_and_Data_Preperation/kantSaar_D1.docx%23_Toc41312248
file://///172.19.1.13/Research/kantSaar/Deliverable/D1_Architecture_Data_Structure_and_Data_Preperation/kantSaar_D1.docx%23_Toc41312249

Introduction

kantSaar

Executive Summary
This document describes the architecture and data processing in the kantSaar project. The kantSaar

project aims to evaluate traffic situations, if they are suitable for a handover from automated to

manual driving function. Architecture-related requirements have been defined based on visionary

scenarios. Based on the requirements, the architecture has been defined. It describes where and

which data needs to be aggregated.

Four data classes have been defined: Environmental data such as weather information, traffic data in

the form of V2X messages, vehicle data in the form of sensor values and driver-related data such as

the current stress level of the driver. All gathered data is sent to the data fusion, which combines

them to an overall traffic situation description. Since a Big Data approach has been chosen and

therefore many data records are generated, it is important that the data is transferred as sparingly as

possible. Therefore, all data is compressed by Google Protobuf [1] before it is sent. HTTP with REST

[2] is used to transmit the data to the data fusion in the backend.

Introduction

kantSaar

1 Introduction
The level of automation in vehicles will significantly increase over the next decade. As automation

will become more and more common, vehicles will not be able to master all traffic related situations

for a long time by themselves. In such situations, the driver must take over and steer the vehicle

through the situation. One of the important questions is when the takeover should be performed.

Many decisive factors must be considered. On the one hand, the current traffic situation including

roads, traffic lights and other road users, especially vulnerable road users, and on the other hand, the

state of the driver must be considered as well. The goal is to combine neurocognitive measurements

of the drivers’ state and the static and dynamic traffic related data to develop an interpretation of

the current situation. This situation analysis should be the basis for the determination of the most

suitable point for a takeover maneuver.

One goal of the research project kantSaar is to record traffic situations holistically. Therefore, it is

necessary to identify which data needs to be gathered. This goal has been defined, using a

requirement analysis based on visionary scenarios, described in Chapter 2. An architecture is needed

to describe how the data gathering is performed. It defines data sources (aggregators), where data is

combined and evaluated. The architecture and its components are described in Chapter 3.

Traffic data, vehicle data, environmental data and driver-related data: Each data class has different

characteristics. A challenge of the project is to combine those data using a unified data model. The

data model is described in Chapter 4. Due to the different characteristics, the data set is not

complete in every traffic situation. Therefore, the data needs to be supplemented with interpolation

and extrapolation processes, described in Chapter 5.

1.1 Project goals
The goal is to build up a sensor infrastructure and to combine neurocognitive data with

environmental and traffic-related data to evaluate the overall traffic situation. By using camera

systems, which can track micro expressions in the driver’s face, a detailed driver state can be

detected, including emotions and vital signs. With this information, it is possible to assess traffic

situations and adapt the handover strategy according to the drivers’ condition. In addition, a “stress

map” can be created, that indicates which areas in urban and non-urban environments are

challenging for a driver of semi-automated vehicles. This information can later be provided to the

vehicles and the infrastructure to make automated driving safer and more reliable.

1.2 Approach
To accomplish the previously described project goals, a five-step approach, containing requirement

analysis, data collection, data preparation, data fusion and evaluation was developed. This document

describes the steps requirement analysis, data collection and data preparation in detail.

Requirement analysis

kantSaar

2 Requirement analysis

2.1 Scenarios
The base of the requirement analysis are screnario descriptions. They describe five situations, that

users of automated vehicles can experience in the near future.

2.1.1 SCN-00: Visionary Scenario
IT manager Emilia E. wants to drive with her car from her city apartment to an IT company located at

the edge of the conurbation. Her navigation system suggests the route with the highest automation

mode. Additionally it shows her on which sections of the route she has to be extra attentive and on

which sections she needs less attention and can keep attention to other tasks. These sections are

important for Emilia E. as she can prepare her upcoming meeting. During the ride, the vehicle

supports her on certain sections and takes full control of speed and longitudinal and transverse

steering. The latter is for example, on the nearby main road. On the way, she approaches a complex

subway construction site that the vehicle cannot manage independently due to constantly changing

traffic flows. The control system of Emilia E.'s vehicle is informed about the situation through the

exchange of information with the traffic infrastructure and traffic information services and can hand

over the driving task to her at an appropriate point at an early stage. On the basis of neuro-

cybernetic expected values of the degree of attention as well as information about the current traffic

situation, the system decides to prepare and carry out the handover task 300m before the

construction site. Emilia E. receives up-to-date information on the situation and the entertainment

system of her vehicle will be suppressed. After the construction site, the vehicle system takes over

again. In the further ride, she reaches a section of road which shows a large number of road damages

leading to a very uncomfortable driving. She prefers to take control of the vehicle by herself and

informs the vehicle about her decision. On the basis of the measured values from the learning

machine's archive, the system prepares her for the handover at an early stage/time (200 m). The rest

of the ride the vehicle can drive again fully automated, because her destination is located in a well

developed industrial area. She reaches it safely and well prepared.

2.1.2 SCN-01: Stationary vehicle blocks lane
A vehicle drives automatically at 30 km/h on the left lane of a two-lane one-way street in dense

traffic in the evening. The driver is tired and therefore his attention is affected. The left lane is

blocked by a broken down, cooperative vehicle, which alerts the driver to the dangerous situation by

transmitting DENM. The following traffic is forced to avoid the vehicle by using the right lane. The

automated vehicle receives the DENM. Due to the complexity of the situation (dense traffic with high

percentage of legacy vehicles), the vehicle initiates the handover to the driver.

2.1.3 SCN-02: Pedestrians at the intersection
A vehicle drives automatically at 45 km/h towards an intersection with traffic lights. It is sunny and

warm. Because of the late morning, there is sparse traffic. Due to the focused work on his tablet, the

driver's attention is constrained. The vehicle is going to turn right at the intersection. There are two

lanes: one turning lane to the right and one turning lane to the left. The same traffic light controls

both directions. The traffic light switches to green while the vehicle is driving towards the

intersection. There are pedestrians who are going to cross the road the vehicle will turn in. The

intersection is equipped with a camera system that detects the pedestrians. Their positions are sent

Requirement analysis

kantSaar

to the road users using CPM messages. Due to the dynamic behavior of pedestrians, the handover to

the driver is made before the turning.

2.1.4 SCN-03: Drive towards fog
A vehicle drives automatically at 70 km/h on an empty rural road with a wet road surface. The driver

observes the driving situation. The vehicle moves towards a dense wall of fog. It receives a

corresponding warning via DAB. Bad weather conditions limit the function of the vehicle sensors.

Therefore, the handover to the driver is performed before the vehicle arrives at the fog.

2.1.5 SCN-04: Bad road conditions
A vehicle drives automatically at 50 km/h in the city. Due to road damage, the ride is rough. The

vehicle recognizes that the driver feels uncomfortable and slows down automatically. The driver

disagrees with the vehicle's decision because he wants to arrive in time. Therefore, the driver would

like to take control of the vehicle. Using the HMI the driver informs the vehicle, whereupon the

vehicle initiates a handover.

2.2 Gathered Requirements
Based on the scenarios, requirements are defined by the project team. Each scenario is stripped

down to single statements that are analyzed, if they contain any important information that can be

used for handover decision algorithm.

Each requirement is mapped to a scope-category and a class. The scope describes whether the

requirement addresses the architecture or the implementation of the prototype. The class provides

information whether the requirement is technical or organizational. Requirements that are

architectural-scoped and classified as technical are used both for the creation of the architecture and

for its later evaluation. This approach was used in the research project iKoPA [3][4].

The following table contains all defined requirements.

Req.-No. Subject Source Scope Class Description

REQ-SYS-001 Vehicle recognizes

the level of traffic

density

 SCN-01 Implementation Technical The vehicle system

shall be able to

recognize the level of

traffic density.

REQ-SYS-002 Vehicle recognizes

the level of light

SCN-01 Implementation Technical The vehicle system

shall be able to

recognize the level of

light.

REQ-SYS-003 Vehicle receives

DENM

SCN-01 Architecture Technical The vehicle shall be

able to receive DENM

via G5.

Requirement analysis

kantSaar

REQ-SYS-004 Vehicle sends

DENM

basic Architecture Technical The vehicle shall be

able to send DENM

via G5.

REQ-SYS-005 Vehicle-aggregated

data send to

backend

SCN-01,

SCN-02,

SCN-03,

SCN-04

Architecture Technical The data aggregated

by the vehicle shall

be send to the

backend.

REQ-SYS-006 Vehicle recognized

its position vector

basic Implementation Technical The vehicle shall be

able to recognize its

position vector. The

position vector

consists of the

position, the course,

the heading, speed,

position accuracy and

time.

REQ-SYS-007 Lane-precise

position

SCN-01,

SCN-02

Implementation Technical The vehicle shall be

able to match its

position to the

current lane.

REQ-SYS-008 HMI is available all SCN Architecture Technical The vehicle shall

provide a human-

machine-interface.

REQ-SYS-009 vehicle requests

manual driving

function

SCN-01,

SCN-02,

SCN-03

Architecture Technical The vehicle shall be

able to request

manual driving

function.

REQ-SYS-010 vehicle receives

MAP

SCN-02 Architecture Technical The vehicle shall be

able to receive MAP

messages via G5.

REQ-SYS-011 vehicle knows its

route

SCN-02 Architecture Technical The vehicle shall

know its route.

REQ-SYS-012 intersection

determines

pedestrian position

SCN-02 Implementation Technical The intersection shall

be able to determine

the existence and

position (-vector) of

pedestrians.

Requirement analysis

kantSaar

REQ-SYS-013 intersection sends

CPM

SCN-02 Architecture Technical The intersection shall

be able to send

CPM’s via G5,

containing the

position of obstacles.

REQ-SYS-014 intersection send

MAP

SCN-02 Architecture Technical the intersection shall

send MAP messages

via G5.

REQ-SYS-015 intersection send

SPAT

SCN-02 Architecture Technical The intersection shall

send SPAT messages

via G5.

REQ-SYS-016 Vehicle receives

SPAT

SCN-02 Architecture Technical The vehicle shall be

able to receive SPAT

messages via G5.

REQ-SYS-017 Vehicle receives

CPM

SCN-02 Architecture Technical The vehicle shall be

able to receive CPM

via G5.

REQ-SYS-018 Intersection-

aggregated data

send to backend

SCN-02 Architecture Technical The data aggregated

by the intersection

shall be send to the

backend.

REQ-SYS-019 Pseudonymous

vehicle data

all SCN Architecture Technical The data send by the

vehicle to the

backend shall be

pseudonymised.

REQ-SYS-020 Encrypted vehicle

data

all SCN Architecture Technical The data send by the

vehicle to the

backend shall be

encrypted.

REQ-SYS-021 Discard of

untrustworthy

messages

SCN-01,

SCN-02

Architecture Technical The vehicle shall

discard

untrustworthy

messages (not

signed) received by

G5.

REQ-SYS-022 Vehicle receives

weather

information

SCN-03 Architecture Technical The vehicle shall be

able to receive

weather information.

Requirement analysis

kantSaar

REQ-SYS-023 Driver requests

handover

SCN-04 Architecture Technical The HMI provides a

mechanism to allow

the driver to take

control.

REQ-SYS-024 Route displayed on

HMI

SCN-00 Implementation Technical The HMI shall

provide the

possibility to display

a route.

REQ-SYS-025 Distinguish

between automatic

levels

SCN-VS Implementation Technical The route shall be

distinguished by their

ability to drive

automatically.

REQ-SYS-026 Stress map

available

SCN-00 Architecture Technical The backend shall

provide a map

indicating stressful

road sections on a

planned route.

REQ-SYS-027 Handover start

time

SCN-00 Architecture Technical The backend shall

provide the start

time of a handover.

REQ-SYS-028 Transition time SCN-00 Architecture Technical The backend shall

provide the transition

time of a handover.

REQ-SYS-029 Minimal Risk

Maneuver

basic Architecture Organizational The vehicle shall

perform a minimal

risk maneuver if the

driver does not take

control when

requested.

REQ-SYS-030 Suppress

entertainment

systems

SCN-00 Implementation Technical The vehicle shall

suppress the

entertainment

systems if the driver

is requested to take

control.

REQ-SYS-031 Vehicle requests

automatic driving

function

SCN-00 Architecture Technical The vehicle shall be

able to request the

automatic driving

function.

Requirement analysis

kantSaar

REQ-SYS-032 Vehicle recognizes

level of attention

SCN-01,

SCN-02,

SCN-03,

SCN-04

Implementation Technical The vehicle shall be

able to recognize the

level of attention of

the driver.

REQ-SYS-033 Vehicle recognizes

action

all SCN Implementation Technical The vehicle shall be

able to recognize

what the driver is

doing.

REQ-SYS-034 Driver's level of

comfort

all SCN Implementation Technical The vehicle shall be

able to recognize

how the driver is

feeling.

Table 1 Requirement list

Architecture

kantSaar

3 Architecture
The project kantSaar aims to design a system architecture, allowing the fusion of various data to an

overall traffic situation description. The challenge is to merge data with different characteristics. The

result of the requirement analysis described in chapter 2 requests to unify discrete data with

continuous data. Most data is originated in the remote station plane at a Roadside ITS Station (R-ITS-

S) or the Vehicle Under Test (VUT) and other Vehicle ITS Station (V-ITS-S) systems. Other data is

collected from third party services or own cloud-based service providers preprocessing raw data.

The complete set of required data cannot be directly accessed at a local node in the remote station

plane, because the information is distributed on various systems. Therefore, the data is transmitted

to a central component in which the data fusion will be performed.

Figure 1 Data sources in the remote station plane

Figure 1 shows elements of the remote station plane. The RSU accesses the traffic light system (TLS),

the direct short radio communications (DSRC) system, indication loops and optical sensors like traffic

cameras. The TLS provides information about current signal phases of the lane topology. The sensors

are used to detect common road users, DSRC like ETSI ITS-G5 and C-V2X receives information about

Cooperative Vehicles (CV). Additionally, the VUT and CV also provide information about other road

users using their in-vehicle sensors in combination with their Collective Perception Service (CPS). The

simultaneous detection of the same road user by vehicles and the infrastructure causes the problem

of a multiplication of detected objects, induced by the principle of distributed sensors [5].

Architecture

kantSaar

The information of the remote station plane is supplemented with information from a traffic center

and third party services. If the used TLS does not provide information about the signal phases or

sensors locally, a corresponding traffic center may have that information.

3.1 Overview
Figure 2 shows the detailed architecture of kantSaar. It is split in two parts: The Remote Station Plane

and the Backend Plane. The Remote Station Plane contains infrastructure systems called roadside ITS

stations (R-ITS-S) and Vehicle ITS Stations (V-ITS-S). The VUT is a specialized V-ITS-S with access to a

driver monitoring system. The backend plane consists of services for the pre-processing of locally

gathered data and additional third party data suppliers as well as the Data Fusion and the Situation

Evaluation. The raw, fused and evaluated data is stored in the Situation Storage.

Backend Plane

Sensor
Aggregation

R-ITS-S V-ITS-S

Traffic Light
Controller

Traffic Data
Aggregator

Traffic Data
Aggregator

Vehicle Data
Aggregator

Driver-related
Data Aggregator

Data Fusion

Situation Evaluation Situation Storage

Open Weather
Data Provider

Environment Data Aggregator Traffic Data Aggregator

External Traffic
Data Provider

DDA_DFVDA_DFTDA_DFEDA_DF

Remote Station Plane

TDAC_TDASPTLC_TDASPSA_EDA TDAC_TDASPEXT_TDASPEXT_EDA

DF_SS

SE_SS

Figure 2 Detailed Architecture

3.2 Components

3.2.1 Driver-related Data Aggregator
The driver-related data aggregator is described in a separate document. When it is finalized, it will be

linked here.

Architecture

kantSaar

3.2.2 Environment Data Aggregator
The function of the Environment Data Aggregator is to collect environment data and provide it to the

Data Fusion. This data is primarily weather data. Weather information is an important part of road

traffic and can significantly affect a traffic situation. The weather data, which is collected in the

Environment Data Aggregator is bound to a timestamp with a validity and a location area. It

describes the current weather conditions using information about temperature, precipitation, wind,

light and visibility conditions (and more, such as pressure, humidity, cloudiness, …).

The weather data, which represents the current weather conditions in the immediate vicinity, is

provided by the abstract component Open Weather Data Provider in the backend plane. It serves as

a service provider and supplies its data from the OpenWeatherMap.org website using a free weather

API.

Figure 3 EDA inner structure and environment

The sensor aggregation component, which is settled in an ITS roadside station is another information

provider for the Environment Data Aggregator. For this a weather station with sensors could be

mounted to the ITS Roadside station and provide real time data about the weather condition in the

correspondent intersection area.

3.2.3 Traffic Data Aggregator
The Traffic Data Aggregator is used to collect and aggregate traffic data in a cooperative V2X

environment. This data is primarily the V2X messages sent and received by the remote stations via

ITS G5 and the information contained therein about the current immediate traffic situation.

Architecture

kantSaar

3.2.3.1 Traffic Data Aggregator Client

The Traffic Data Aggregator Client (TDAC) is a component that is present both in the vehicle and in

infrastructure components, like ITS Roadside stations. Its purpose is to collect traffic-related data

contained in V2X-messages (CAM, DENM, SPaT, MAP, CPM) sent or received by this station.

To gather this information, the TDAC obtains all messages sent from the Local Dynamic Map,

processes them and extracts the relevant information. The collected data is then compressed and

sent (via interface TDAC_TDASP) to the Traffic Data Aggregator Service Provider located in the

backend.

V2X-Message Description

CAM Cooperative Awareness Messages (CAMs) are messages exchanged in the ITS
network between ITS-Ss to create and maintain awareness of each other and
to support cooperative performance of vehicles using the road network. A
CAM contains status and attribute information of the originating ITS-S. The
content varies depending on the type of the ITS-S. For vehicle ITS-Ss the status
information includes time, position, motion state, activated systems, etc. and
the attribute information includes data about the dimensions, vehicle type
and role in the road traffic, etc. On reception of a CAM the receiving ITS-S
becomes aware of the presence, type, and status of the originating ITS-S. [7]

DENM Decentralized Environmental Notification Message (DENM) is a facilities layer
message that is mainly used by ITS applications in order to alert road users of
a detected event using ITS communication technologies. A DENM is used to
describe a variety of events that can be detected by ITS-Ss. This message
contains information related to an event that has potential impact on road
safety or traffic condition. An event is characterized by an event type, an

Figure 4 TDA inner structure and environment

Architecture

kantSaar

event position, a detection time and a time duration. These attributes may
change over space and over time. [8]

SPaT Signal Phase And Timing (SPAT), is a message type which describes the current
state of a signal system and its phases and relates this to the specific lanes (and
therefore to movements and approaches) in the intersection. It is used along
with the MAP message to allow describing an intersection and its current
control state. [9]

MAP The MAP message is used to convey many types of geographic road
information. At the current time its primary use is to convey one or more
intersection lane geometry maps within a single message. The map message
content includes such items as complex intersection descriptions, road
segment descriptions, high speed curve outlines, and segments of roadway.
[9]

CPM The Collective Perception Message (CPM) contains information about
detected objects by the disseminating ITS-S. The message consists of
information about the disseminating ITS-S, its sensory capabilities and its
detected objects. These objects are classified in vehicles or pedestrians for
example including information about their position, heading and movement
speed. This message focuses on reporting changes in the dynamic road
environment. [10]

3.2.3.2 Traffic Data Aggregator Service Provider

The Traffic Data Aggregator Service Provider (TDASP) is the backend component of the Traffic Data

Aggregator. On the one hand it provides an interface (TDAC_TDASP) to receive traffic data collected

by the TDAC of remote stations. On the other hand the TDASP is also able to receive and process

data via the interface EXT_TDASP from other sources like an external supplier of traffic data. The

collected traffic information is processed, checked for duplicates and subsequently merged.

Eventually this data is forwarded to the Data Fusion via the specified interface TDA_DF.

3.2.3.3 External Traffic Data Provider

A solution for an external traffic data provider could be a federal or state transport service. In this

case an own implementation called TravelTimeRecorder is used as a solution for external traffic data.

The implementation of the TravelTimeRecorder enables data sets to be completed on routes

between the individual traffic nodes. The concept of the TravelTimeRecorder is to record each

individual traffic node as a measure point at which it is possible to leave the section of the route. The

road site units distribute these measure points to each individual vehicle using ITS-G5.

If a vehicle receives these measure points and passes one of these, a measurement is started

automatically. This measurement runs until the next measure point is passed or the measurement is

discarded due to a parking process or something else.

The measurements will be transmitted to the road side units using ITS-G5. A road site unit forwards

these measurements to the backend for further evaluation.The measurements can be used to

determine average travel times on a large number of sections. Analysis and evaluation of the traffic

density on a given (partial) route in areas without road site units and their detection will be possible.

Architecture

kantSaar

3.2.4 Vehicle Data Aggregator
The Vehicle Data Aggregator (VDA) collects sensor data of the VUT. The vehicle sensor data is

originated of the vehicles CAN bus systems. CAN data is transmitted dynamically in the matter of

time, e.g. the current lateral acceleration is transmitted more often as the state of the wiper system.

Using a sensor data abstraction layer, the VDA registers for a subset of the available vehicle data

listed in Table 2.

Value Description

Brake System Status of the brake system including brake actuation, status of Antilock
Braking System and if a panic braking is performed

Clutch and Gear
status

Status of the clutch pedal (if available) and the current gear

Door position Position of each door (closed, ajar or open)

Exterior Lights Low and High beam status, fog lights, emergency lights, hazard warning
system, turning signals

Speed Vehicle speed and longitudinal and latitudinal acceleration

Rain Sensor Rain intensity sensor and wiper system

Yaw Yaw rate, yaw velocity, steering wheel angle and steering wheel velocity
Table 2 VDA sensor values

Figure 5 shows the inner structure of the VDA. As the submission involves overhead, the sensor data

is not directly forwarded on reception but stored in a local vehicle data storage. Therefore, the

collected data is transmitted periodically via the interface VDA_DF. The period can be adapted on

changing factuality e.g. mobile reception quality. If the transmission was successful, the storage is

cleared.

Unlike the traffic data aggregator, VDA only consists of a V-ITS-S part executed on the VUT. There is

no need to pre-merge sensor values of different VUT in the backend plane as they operate

independently and no duplicates need to be filtered.

Figure 5 VDA inner structure and environment

Architecture

kantSaar

3.2.5 Data Fusion
After the collection of all traffic and neurocognitive data, a fusion and preparation of this data must

take place. The merging of all recorded data takes place in the data fusion, which represents the

central component of the project kantSaar. First, the data is persistently stored as raw data.

Figure 6 table structure of raw data

Subsequently, the raw data is evaluated and written to the so-called situation database. During the

evaluation, classifications and groupings of the raw data are performed in order to transfer it into a

simplified data pattern. As a result, traffic situations can be meaningfully evaluated and reproduced

later on.

Figure 7 table structure of situation data

Finally, artificial intelligence algorithms are used to evaluate and analyze the data in order to make a

decision about the likelihood of transferring driving control to the driver.

Architecture

kantSaar

3.2.6 Situation Storage
The situation database serves to simplify the overall evaluation and enables easier decision-making

when evaluating and analyzing the data. The raw data is evaluated in a simplified manner so that a

decision can later be determined more efficiently.

Figure 8 schematic draft of situation data

The diagram shows that objects from different sources (CAM or CPM) can be the same object or an

object of the same type. This means that it has basically the same information, but in different

formats and data structures. Therefore, this data must be standardized in order to enable evaluation,

which is independent of the source and structure.

Every situation is determined and triggered by a geographical and temporal parameter. Therefore, a

certain geographical area is observed at a given point in time.

3.2.7 Situation Evaluation
The purpose of the situation evaluation is to determine the degree to which a traffic situation at a

certain time and place is suitable for a handover from automated to manual driving function. In order

for the situation evaluation to make such a decision, it is necessary to have suitable data sets as a

basis for the input data. The collected raw data of the aggregators and their unification and

processing in the data fusion forms the resulting situation database. The information contained

within the situation database serves as the basis for the evaluation of the individual traffic situations.

The different traffic situations are the data sets that the situation evaluation needs as input.

An individual traffic situation is characterized by traffic objects, lanes, hazard events, the

environment and weather as well as raw vehicledata. Each data sample has a situation ID, which is a

reference to the metadata (time, geo-position and validity) of the traffic situation.

The time, the geo-position and its validity are bound as meta-data to each traffic situation. This

metadata is not taken into account in the calculation (of the decision). This information remains

unchanged in the output of the evaluation and thus determines at which time and at which place a

transfer is suitable or not. The output data, i.e. the result of the situation evaluation will be a degree

of suitability for a transfer from automated to manual driving function. The suitability degree will be

a scale value that defines to which extent a traffic situation is suitable for a handover (for example,

on a scale range from one to ten (1...10) for not suitable to highly suitable).

Architecture

kantSaar

3.3 Interfaces
The previously described architecture (Fehler! Verweisquelle konnte nicht gefunden werden.)

defines numerous interfaces to transport data between the different components.

3.3.1 SE_SS

Provider Situation Storage

Consumer Situation Evaluation

Type MySQL Database query

Description The Situation Storage requests situation data sets with MySQL queries, which
serve as the basis for the evaluation of an individual traffic situation. The
calculated result of the Situation Evaluation is a scale range number indicating the
suitability for a handover. For each situation, the evaluated result is written back in
the Situation Storage with another MySQL query.

Data format SQL Statement (MySQL)

3.3.2 DF_SS

Provider Situation Storage

Consumer Data Fusion

Type MySQL Database query

Description The Data Fusion filters the collected data and writes grouped data sets into the
Situation Storage. The filtering and grouping is based on parameters given by
requests of users.

Data format SQL Statement (MySQL)

3.3.3 EDA_DF

Provider Data Fusion

Consumer Environmental Data Aggregator (Service Provider)

Type HTTP Rest

Description The Environmental Data Aggregator sends HTTP Post requests to the Data Fusion.
These requests contain the corresponding environmental data in their HTTP body.
This data mostly contains information about the current weather.
The Data Fusion confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “EnvironmentData”.

3.3.4 TDA_DF

Provider Data Fusion

Consumer Traffic Data Aggregator (Service Provider)

Type HTTP Rest

Description The Traffic Data Aggregator sends HTTP Post requests to the Data Fusion. These
requests contain the corresponding traffic data in their HTTP body.
This traffic data contains all the data received from the multiple Traffic Data
Aggregator Clients.

Architecture

kantSaar

The Data Fusion confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “TrafficData”.

3.3.5 VDA_DF

Provider Data Fusion

Consumer Vehicle Data Aggregator

Type HTTP Rest

Description The Vehicle Data Aggregator sends HTTP Post requests to the Data Fusion. These
requests contain the corresponding vehicle data in their HTTP body.
This vehicle data consists of all the data, like CAN and positioning data, collected
on the vehicle.
The Data Fusion confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “VehicleData”.

3.3.6 DDA_DF

Provider Data Fusion

Consumer Driver-related Data Aggregator

Type HTTP Rest

Description The Driver-related Data Aggregator sends HTTP Post requests to the Data Fusion.
These requests contain the corresponding driver-related data in their HTTP body.
This set contains data on the current status of the driver.
The Data Fusion confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “NeurocognitiveData”.

3.3.7 EXT_EDA

Provider Environmental Data Aggregator

Consumer Open Weather Data Provider

Type HTTP Rest

Description The Open Weather Data Provider sends HTTP Post requests to the Environmental
Data Aggregator. These requests contain the corresponding environmental data in
their HTTP body.
This data contains weather information from a publicly available weather service.
The recipient confirms the reception using the status codes in the HTTP response.

Data format Protobuf message “EnvironmentData”.

3.3.8 SA_EDA

Provider Environmental Data Aggregator

Consumer Sensor Aggregation

Type HTTP Rest

Architecture

kantSaar

Description The Sensor Aggregation sends HTTP Post requests to the Environmental Data
Aggregator. These requests contain the corresponding environmental data in their
HTTP body.
This data contains weather and climate information, measured by the sensors of
the sender.
The recipient confirms the reception using the status codes in the HTTP response.

Data format Protobuf message “EnvironmentData”.

3.3.9 TLC_TDASP

Provider Traffic Data Aggregator (Service Provider)

Consumer Traffic Light Controller

Type HTTP Rest

Description The Traffic Light Controller sends HTTP Post requests to the provider. These
requests contain the corresponding traffic data in their HTTP body.
This traffic data contains the V2X messages SPaT and MAP generated by the
controller.
The service provider confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “TrafficData”.

3.3.10 TDAC_TDASP

Provider Traffic Data Aggregator (Service Provider)

Consumer Traffic Data Aggregator Client

Type HTTP Rest

Description The Traffic Data Aggregator Client sends HTTP Post requests to the provider. These
requests contain the corresponding traffic data in their HTTP body.
This traffic data contains all the v2x messages received and generated by the
vehicle.
The service provider confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “TrafficData”.

3.3.11 EXT_TDASP

Provider Traffic Data Aggregator (Service Provider)

Consumer External Traffic Data Provider

Type HTTP Rest

Description The External Traffic Data Aggregator Provider sends HTTP Post requests to the
provider. These requests contain the corresponding traffic data in their HTTP body.
The service provider confirms the reception using the status codes in the HTTP
response.

Data format Protobuf message “TrafficData”.

Data model

kantSaar

4 Data model

4.1 Data definitions
Multiple different data types are getting used within the described system. These contain the

relevant information for the particular system components and can be exchanged between them. A

distributed system like this relies heavily on the performance of its components and the

communication channels between them. Therefore the data needs to be defined in a way that allows

fast serialization, processing and distribution.

4.1.1 Protocol Buffers
Protocol buffers or short “Protobuf” is a method of serializing structured data, developed by Google1

and published under the BSD license. Its main design goal has been the creation of simple, high-

performance data structures, both for the exchange and the storage of data. These structures are

described in human-readable proto definition files (.proto) and are called messages. Protobuf

delivers a compiler (protoc) to create the corresponding class files for common programming

languages like Python, C++ or Java, which can be integrated in libraries and other software projects.

4.2 Data structures
The following messages have been defined for the storage and distribution of data, using the proto3-

format.

4.2.1 Package: dataelements
The package “dataelements” contains the “Data” message, which defines a wrapper object, to allow

the storage/distribution of one of the given data types as a unified object. It always contains only one

of the listed objects.

1 https://developers.google.com/protocol-buffers

Data model

kantSaar

syntax = "proto3";

package dataelements;

import "environment.proto";
import "neurocognitive.proto";
import "traffic.proto";
import "vehicle.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.dataelements";
option java_multiple_files = true;

message Data {
 oneof message {
 environmentaldata.EnvironmentData environmentData = 1;
 vehicledata.VehicleData vehicleData = 2;
 trafficdata.TrafficData trafficData = 3;
 neurocognitivedata.NeurocognitiveData neuroData = 4;
 }
}

4.2.2 Package: metadata
The package “metadata” contains the message “MetaData”. This message defines a set of

information to put the attached data in context.

syntax = "proto3";

package metadata;

import "general.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.dataelements";
option java_multiple_files = true;

message MetaData {
 int32 sourceId = 1;
 int64 tsBegin = 2;
 int32 validity = 3;
 general.GnssPosition gnssPosition = 4;
}

4.2.3 Package: general
The package “general” contains multiple message definitions, which are used in messages of other

packages, which is mostly the definition of messages to store geographic information.

Data model

kantSaar

syntax = "proto3";

package general;

option java_package = "de.htwsaar.fgvt.dataaggregator.library.general";

option java_multiple_files = true;

message GnssData {

 int32 ts_delta = 1;

 PositionVector gnssPositionVector = 2;

 GnssMetaData gnssMetaData = 3;

}

message Wgs84Position {

 int64 latitude = 1;

 int64 longitude = 2;

}

message GnssPosition {

 Wgs84Position position = 1;

 int32 altitude = 2;

}

message PositionDelta {

 sint32 deltaLatitude = 1;

 sint32 deltaLongitude = 2;

 sint32 deltaAltitude = 3;

}

message PositionVector {

 PositionDelta gnssPositionDelta = 1;

 int32 heading = 2;

 int32 speed = 3;

}

message GnssMetaData {

 int32 numberOfSatellites = 1;

}

Data model

kantSaar

message GeoArea {
 oneof message {
 CircularGeoArea circularGeoArea = 1;
 RectangularGeoArea rectangularGeoArea = 2;
 }
}

message CircularGeoArea {
 Wgs84Position centerPoint = 1;
 int32 radius = 2;
}

message RectangularGeoArea {
 Wgs84Position centerPoint = 1;
 double metersToShortSide = 2;
 double metersToLongSide = 3;
 double azimuthAngle = 4;
}

// General
message Tuple {
 string key = 1;
 oneof value {
 double doubleValue = 2;
 int32 intValue = 3;
 int64 longValue = 4;
 string stringValue = 5;
 bool booleanValue = 6;
 bytes bytesValue = 7;
 }
}

message Value {
 oneof message {
 double doubleValue = 1;
 int32 intValue = 2;
 int64 longValue = 3;
 string stringValue = 4;
 bool booleanValue = 5;
 bytes bytesValue = 6;
 }
}

Data model

kantSaar

4.2.4 Package: environmentaldata
The package “environmentaldata” defines one of the main datatypes, used in the system. The

“EnvironmentData” message contains multiple entries of “WeatherData” describing the current

weather, in addition it has a MetaData object with necessary supportive information.

syntax = "proto3";

package environmentaldata;

import "metadata.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.environmentaldata";
option java_multiple_files = true;

message EnvironmentData {
 metadata.MetaData metaData = 1;
 repeated WeatherData weatherDataSets = 2;
}

// Weather Data
message WeatherData {
 int32 ts_delta = 1;
 sint32 temperature = 2; // in 1/10 degree Celsius
 int32 humidity = 3; // in percent
 int32 airPressure = 4; // in 1/10 hPa
 int32 windSpeed = 5; // in km/h
 int32 windDirection = 6; // in degree
 int32 precipitation = 7; // in 1/10 l/m^2
}

4.2.5 Package: vehicledata
The package “vehicledata” defines among others the main datatype “VehicleData”, which is mostly

used by the VehicleDataAggregator. It defines message types containing data collected from the

vehicle.

Data model

kantSaar

syntax = "proto3";

package vehicledata;

import "general.proto";
import "metadata.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.vehicledata";
option java_multiple_files = true;

message VehicleData {
 metadata.MetaData metaData = 1;
 repeated CanData canDataSets = 2;
 repeated general.GnssData gnssDataSets = 3;
}

// CAN message types
message CanData {
 int32 ts_delta = 1;
 // different CAN data elements follow here
 repeated CanTuple canKeyValue = 2;
}

// General
message CanTuple {
 SensorKey key = 1;
 oneof value {
 double doubleValue = 2;
 int32 intValue = 3;
 int64 longValue = 4;
 string stringValue = 5;
 bool booleanValue = 6;
 bytes bytesValue = 7;
 }
}

Data model

kantSaar

enum SensorKey {
 VD_CAN_BRAKE_ACTUATION = 0; // Brake pedal applied signal. Type Boolean (false = OFF, true = On)
 VD_CAN_CLUTCH_SWITCH_ACTUATION = 1; // Signals the state of the clutch (switch). Type: Boolean
(false = Off, true = On)
 VD_CAN_CURRENT_GEAR = 2; // Byte. Indicates the current gear of the vehicle.0 = Idle, 1 = One, ...
254 Reverse
 VD_CAN_DIRECTION_OF_DRIVING = 3; // Describes the direction of driving (0 = unknown, 1 =
standstill, 2=forward, 3=reverse).
 VD_CAN_DOOR_POS_FRONT_RIGHT = 4; // Byte: 0 = Closed, 1 = Ajar, 2 = Open
 VD_CAN_DOOR_POS_FRONT_LEFT = 5; // Byte: 0 = Closed, 1 = Ajar, 2 = Open
 VD_CAN_DOOR_POS_REAR_RIGHT = 6; // Byte: 0 = Closed, 1 = Ajar, 2 = Open
 VD_CAN_DOOR_POS_REAR_LEFT = 7; // Byte: 0 = Closed, 1 = Ajar, 2 = Open
 VD_CAN_DOOR_POS_BOOT = 8; // Byte: 0 = Closed, 1 = Ajar, 2 = Open
 VD_CAN_EMERGENCY_LIGHTNING = 9; // The activity of emergency vehicle lighting (AKA light bar,
beacon). Additional to standard vehicle lighting e.g. hazard warning lights for use on emergency, maintenance
or transportation response vehicles. Type: Boolean (false = Off, true = On)
 VD_CAN_FOG_LIGHT_FRONT = 10; // Boolean
 VD_CAN_FOG_LIGHT_REAR = 11; // Boolean
 VD_CAN_HAZARD_WARNING = 12; // Boolean
 VD_CAN_HIGH_BEAM = 15; // Boolean
 VD_CAN_HORN = 16; // Boolean
 VD_CAN_LATERAL_ACCELERATION = 17; // Double, meter per seconds squared
 VD_CAN_LONGITUDINAL_ACCELERATION = 18; // Double meter per seconds squared
 VD_CAN_MODEL_TYPE = 19; // Byte, 0 = Notch, 1 = Hatch, 2 = Short, 3 = Station Wagon, 4 = Cabrio, 5
= Coupe, 6 = Offroad, 7 = Pickup, 8 = MPV, 9 = SUV
 VD_CAN_PANIC_BRAKING = 20; // Boolean
 VD_CAN_PEDAL_FORCE = 21; // Byte, percent
 VD_CAN_RAIN_INTENSITY = 22; // Short, intensity in percent, 0 = no rain, 250 max rain, 251 =
Invalidity Border
 VD_CAN_SPECIAL_VEHICLE_TYPE = 23;// Byte, 0 = No special vehicle, 1 = Police, 2 = Fire brigade, 3 =
Ambulance or emergency, 4 = Heavy transport or oversize load, 5 = Public transport, 6 = Taxicab, 7 = Slow
vehicle, 8 = Vehicle for handicapped persons, 9 = Building site vehicle, 10 = Agricultural vehicle or machines, 11
= Accompanying vehicle, 12 = Unknown
 VD_CAN_SPEED = 24; // Double, km/h
 VD_CAN_STEERINGWHEEL_ANGLE = 25; // Double, degree
 VD_CAN_STEERINGWHEEL_ANGULAR_VELOCITY = 26; // Double, degree per seconds
 VD_CAN_TURN_SIGNAL_LEVER = 27; // Byte, 0 = idle, 1 = left, 2 = right
 VD_CAN_VEHICLE_HEIGHT = 28; // Integer. In millimeter
 VD_CAN_VEHICLE_LENGTH = 29; // Integer. In millimeter
 VD_CAN_VEHICLE_WIDTH = 30; // Integer. In millimeter
 VD_CAN_WIPER_FRONT = 31; //Byte, 0 = idle, 1 = normal, 2 = fast, 3 = intermittent
 VD_CAN_WIPER_REAR = 32; //Byte, 0 = idle, 1 = normal, 2 = fast, 3 = intermittent
 VD_CAN_YAW_RATE = 33; // Double, degrees per second
 VD_CAN_GNSS_ACCELERATION = 34; // Double, meter per seconds squared
 VD_CAN_GNSS_ALTITUDE = 35; // Double, meter
 VD_CAN_GNSS_HEADING = 36; // Double, degree
 VD_CAN_GNSS_LATITUDE = 37; // Double, degree -90 ... 90
 VD_CAN_GNSS_LONGITUDE = 38; // Double, degree -180 ... 180
 VD_CAN_GNSS_TIMESTAMP = 39; // Long, ms since epoch
 VD_CAN_GNSS_SPEED = 40; // Double, km/h
}

Data model

kantSaar

4.2.6 Package: traffichelper
The package “traffichelper” contains supportive message definitions for other packages, like

topology information for crossroads. These data types are mostly used by the TrafficData

Aggregators.

Data model

kantSaar

syntax = "proto3";

package traffichelper;

import "general.proto";
option java_package = "de.htwsaar.fgvt.dataaggregator.library.trafficdata.helper";
option java_multiple_files = true;

enum StationType {
 UNKNOWN = 0;
 PEDESTRIAN = 1;
 CYCLIST = 2;
 MOPED = 3;
 MOTORCYCLE = 4;
 PASSENGER_CAR = 5;
 BUS = 6;
 LIGHT_TRUCK = 7;
 HEAVY_TRUCK = 8;
 TRAILER = 9;
 SPECIAL_VEHICLES = 10;
 TRAM = 11;
 ROAD_SIDE_UNIT = 15;
}

message DetectedObject {
 int64 objectId = 1;
 general.Wgs84Position position = 2;
 ObjectClassification classification = 3;
 int32 speed = 4;
 int32 heading = 5;
}

enum ObjectClassification {
 VEHICLE_OBJECT = 0;
 PEDESTRIAN_OBJECT = 1;
 BUS_OBJECT = 2;
 TRAM_OBJECT = 3;
 TRAIN_OBJECT = 4;
}

message Lane {
 string title = 1;
 int32 laneId = 2;
 int32 laneWidth = 3;
 int32 speedLimit = 4;
 repeated int32 connectedLanes = 5;
 LaneType laneType = 6;
 AllowedManeuvers allowedManeuvers = 7;
 LaneDirection laneDirection = 8;
}

Data model

kantSaar

enum LaneType {
 OVERLAPPING_LANE_DESCRIPTION_PROVIDED = 0;
 MULTIPLE_LANES_TREATED_AS_ONE_LANE = 1;
 OTHER_NON_MOTORIZED_TRAFFIC_TYPES = 2;
 INDIVIDUAL_MOTORIZED_VEHICLE_TRAFFIC = 3;
 BUS_VEHICLE_TRAFFIC = 4;
 TAXI_VEHICLE_TRAFFIC = 5;
 PEDESTRIAN_TRAFFIC = 6;
 CYCLIST_VEHICLE_TRAFFIC = 7;
 TRACKED_VEHICLE_TRAFFIC = 8;
}

enum LaneDirection {
 INGRESS = 0;
 EGRESS = 1;
}

message AllowedManeuvers {
 bool maneuverStraightAllowed = 1;
 bool maneuverLeftAllowed = 2;
 bool maneuverRightAllowed = 3;
 bool maneuverUTurnAllowed = 4;
 bool maneuverLeftTurnOnRedAllowed = 5;
 bool maneuverRightTurnOnRedAllowed = 6;
 bool maneuverLaneChangeAllowed = 7;
 bool maneuverNoStoppingAllowed = 8;
 bool yieldAllwaysRequired = 9;
 bool goWithHalt = 10;
 bool caution = 11;
 bool reserved1 = 12;
}

enum SignalPhase {
 OUT = 0;
 GREEN = 1;
 ORANGE = 2;
 RED = 3;
 RED_ORANGE = 4;
 RED_ORANGE_GREEN = 5;
}

message StateTimeSpeed {
 SignalPhase phase = 1;
 int32 startTime = 2;
 int32 endTime = 3;
}

message MovementState {
 int32 signalGroupId = 1;
 repeated StateTimeSpeed stateTimeSpeeds = 2;
}

Data model

kantSaar

4.2.7 Package: trafficdata
The package “trafficdata” contains one of the main data types: “TrafficData”. It defines an object

containing multiple data sets of V2xMessages, which have been collected by the

TrafficDataAggregator clients.

Data model

kantSaar

syntax = "proto3";

package trafficdata;

import "general.proto";
import "metadata.proto";
import "traffichelper.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.trafficdata";
option java_multiple_files = true;

message TrafficData {
 metadata.MetaData metaData = 1;
 repeated V2xCam cams = 2;
 repeated V2xCpm cpms = 3;
 repeated V2xDenm denms = 4;
 repeated V2xMap maps = 5;
 repeated V2xSpat spats = 6;
}

message V2xCpm {
 int32 ts_delta = 1;
 int64 stationId = 2;
 traffichelper.StationType stationType = 3;
 repeated traffichelper.DetectedObject detectedObjects = 4;
}

message V2xDenm {
 int32 ts_delta = 1;
 int64 stationId = 2;
 int32 causeCode = 3;
 int32 subCauseCode = 4;
 general.GeoArea relevanceArea = 5;
 /* Removed: int 32 validity = 6. */
 int64 detectionTime = 7;
 int64 expiry_time = 8;
}

message V2xMap {
 int32 ts_delta = 1;
 int64 intersectionId = 2;
 string title = 3;
 repeated traffichelper.Lane lanes = 4;
}

message V2xSpat {
 int32 ts_delta = 1;
 int32 intersectionId = 2;
 map < int32, traffichelper.SignalPhase > laneSignalPhases = 3;
 int32 regionId = 4;
 repeated traffichelper.MovementState movementStates = 5;
}

Data model

kantSaar

message V2xCam {
 int32 ts_delta = 1;

 int64 stationId = 2;
 int32 cam_ts_delta = 3;
 traffichelper.StationType stationType = 4;
 general.PositionDelta referencePositionDelta = 5;
 int32 speed = 6;
 int32 heading = 7;
 enum SpecialVehicle {
 NO_SPECIAL_VEHICLE = 0;
 PUBLIC_TRANSPORT = 1;
 SPECIAL_TRANSPORT = 2;
 DANGEROUS_GOODS = 3;
 ROAD_WORKS = 4;
 RESCUE = 5;
 EMERGENCY = 6;
 SAFETY_CAR = 7;
 }

 SpecialVehicle specialVehicle = 8;
 enum DriveDirection {
 FORWARD = 0;
 BACKWARD = 1;
 UNAVAILABLE = 2;
 }

 DriveDirection driveDirection = 9;
 int32 vehicleLength = 10;
 int32 vehicleWidth = 11;
 enum VehicleLengthConfidenceIndication {
 NO_TRAILER_PRESENT = 0;
 TRAILER_PRESENT_WITH_KNWON_LENGTH = 1;
 TRAILER_PRESENT_WITH_UNKNOWN_LENGTH = 2;
 TRAILER_PRESENCE_IS_UNKNOWN = 3;
 UNAVAILABLE_VLCI = 4;
 }

 VehicleLengthConfidenceIndication vehicleLengthConfidenceIndication = 12;
 bool sirenInUse = 13;
 bool lightBarInUse = 14;
}

4.2.8 Package: neurocognivitedata
The package “neurocognitivedata” contains the main data type “NeurocognitiveData”, which holds

information about the current state of the driver.

Data model

kantSaar

syntax = "proto3";

package neurocognitivedata;

import "metadata.proto";

option java_package = "de.htwsaar.fgvt.dataaggregator.library.neurocognitivedata";
option java_multiple_files = true;

message NeurocognitiveData {
 metadata.MetaData metaData = 1;
}

Data supplementation

kantSaar

5 Data supplementation

5.1 Problem
Not all data sources provide data at any time. This can be caused by different things e.g. a missing

sensor, which is available in another VUT, a defect sensor that sends wrong data, or missing data

input from an external information provider such as a weather provider. The challenge for the data

evaluation is to work with different partly filled data sets combined by the data fusion. An indication

is needed, that is able to distinguish whether there is no data due to a malfunction or whether there

is nothing to detect. In case of using different sensor sets in the vehicle, that indication can be

implemented by a configuration. Supposing of missing cooperative awareness or collective

perception messages, there is no way to detect a misbehavior of the communication system.

There are essentially two different groups of aggregators. One group can collect data autonomously

without the help of other networked vehicles and infrastructure components; the other one depends

in most cases on these networked components and vehicles. The infrastructure units with cameras

for the detection of vehicles and pedestrians belong to the self-sufficient group, which can work in

their field of vision without additional components or assistance. The cooperative vehicles need

other vehicles with V2X communication to collect traffic data. Otherwise, they will only receive

limited data from local sensors or their own vehicle data without knowing their exact environment.

This creates data-gaps or data-shadows in the multitude of data that is collected. This means that

incomplete data is available for certain measurements in subsections.

5.2 Approach

5.2.1 Data validity and expiry date
For every information provided by sensors, the communication system or external service providers,

a validity can be defined. Some data records have a very short validity time e.g. an acceleration

sensor in the vehicle, because the sensor value typically changes within milliseconds. Other

information can be valid for several minutes e.g. weather conditions. That means every collected

data record needs to be tagged with an expiration date. This expiration date should primarily ensure

the time of how long a data record is meaningful. For example, the position of a traffic object, a

warning or the weather condition are not kept in the evaluation for longer than this data is valid. The

expiry date allows reducing the amount of records but also indicates if there is a lack of data. It also

defines the amount of how often a data record needs to be updated.

Figure 9 shows an example of the usage of validity and update rate. Data A represents a

misconfigured update rate for its validity, Data B represents a well configured update rate for the

given validity. As the case of Data A demonstrates, if the time to the next update is not at least twice

as long as the corresponding validity, every missing data record leads to a data gap in the data fusion.

Data B is well configured as a missing data record can be compensated by the validity of the previous

data record.

Data supplementation

kantSaar

Data A

Data B

Update 1

Update 2

Update 3

Update 1

Update 2

Update 3

Update 4

Update 5

Overall availability

Overall availability

Figure 9 Validity example

5.2.2 Interpolation
Using Fast Fourier Transformation (FFT) missing data can be interpolated [6].

5.2.3 Artificial Intelligence
To supplement data sets with data gaps, artificial intelligence (AI) can be used. Based on a trained

machine-learning model for example, the AI can use complete data sets as training data. The input of

the supplementation AI is the data set with the missing gap and again after filling it. This is for

improving the results of the AI by extending the trained data set. For every data type, a different set

of data is used to reconstruct the gap. For example, for a missing speed value from a vehicle sensor,

the position of the vehicle, its acceleration values as well as brake and clutch switch actuation are

used to calculate the gap in the speed records and reproduce it.

Data supplementation

kantSaar

C. Literature

[1] Google Developers - Protocol Buffers, https://developers.google.com/protocol-buffers

[2] REST

[3] iKoPA Deliverable

[4] iKoPA Veröffentlichung

[5] Ramanarayanan Viswanathan, Pramod K. Varshney, Distributed Detection With MultipleSensors:

Part I—Fundamentals, PROCEEDINGS OF THE IEEE, VOL. 85, NO. 1, JANUARY 1997,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=554208

[6] SINGHAL, VLACH; Interpolation Using the Fast Fourier Transform; PROCEEDINGS OF THE IEEE,

DECEMBER 1972; 1972; https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1450888

[7] ETSI EN 302 637-2 V1.4.1 (2019-04), Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic

Service

[8] ETSI EN 302 637-3 V1.3.1 (2019-04), Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental

Notification Basic Service

[9] SAE J2735™ (SEP2015), Dedicated Short Range Communications (DSRC) Message Set Dictionary

[10] ETSI TR 103 562 V2.1.1 (2019-12), Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Analysis of the Collective Perception Service (CPS);

Release 2

https://developers.google.com/protocol-buffers
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=554208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1450888

